Characterization and interlaboratory comparison of a gene expression signature for differentiating genotoxic mechanisms.
نویسندگان
چکیده
The genotoxicity testing battery is highly sensitive for detection of chemical carcinogens. However, it features a low specificity and provides only limited mechanistic information required for risk assessment of positive findings. This is especially important in case of positive findings in the in vitro chromosome damage assays, because chromosome damage may be also induced secondarily to cell death. An increasing body of evidence indicates that toxicogenomic analysis of cellular stress responses provides an insight into mechanisms of action of genotoxicants. To evaluate the utility of such a toxicogenomic analysis we evaluated gene expression profiles of TK6 cells treated with four model genotoxic agents using a targeted high density real-time PCR approach in a multilaboratory project coordinated by the Health and Environmental Sciences Institute Committee on the Application of Genomics in Mechanism-based Risk Assessment. We show that this gene profiling technology produced reproducible data across laboratories allowing us to conclude that expression analysis of a relevant gene set is capable of distinguishing compounds that cause DNA adducts or double strand breaks from those that interfere with mitotic spindle function or that cause chromosome damage as a consequence of cytotoxicity. Furthermore, our data suggest that the gene expression profiles at early time points are most likely to provide information relevant to mechanisms of genotoxic damage and that larger gene expression arrays will likely provide richer information for differentiating molecular mechanisms of action of genotoxicants. Although more compounds need to be tested to identify a robust molecular signature, this study confirms the potential of toxicogenomic analysis for investigation of genotoxic mechanisms.
منابع مشابه
Cloning and Characterization of cbhII Gene fromTrichoderma parceramosum and Its Expressionin Pichia pastoris
The genomic and cDNA clones encoding cellobiohydrolase II (CBHII) have been isolated and sequenced from a native Iranian isolate of Trichoderma parceramosum, a high cellulolytic enzymes producer isolate. This represents the first report of cbhII gene from this organism. Comparison of genomic and cDNA sequences indicates this gene contains three short introns and also an open reading frame codin...
متن کاملComparison of Matrix Metalloproteinases 2 mRNA Expression in Prostatic Adenocarcinoma and Benign Prostatic Hyperplasia
Background and Aims: Prostate cancer is the second most common cancer in men worldwide in men. Matrix metalloproteinase 2 (MMP2) has a role in the invasion and destruction of the basement membrane and the extra-cellular matrix and facilitating the process of tumor cell invasion. The present study was conducted to compare the expression of MMP2 gene in prostate cancer (PCa) and benign prostatic ...
متن کاملQuantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans
Background and Purpose: The frequency of opportunistic fungal infections in immunocompromised patients, especially by Candida species, has sharply increased in the last few decades. The objective of this study was to analyse the ergosterol content and gene expression profiling of clinical isolates of fluconazole resistant Candida albicans. Materials and Methods: Sixty clinical samples were ide...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 110 2 شماره
صفحات -
تاریخ انتشار 2009